3.173 \(\int \frac{(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=190 \[ -\frac{2 a^2 (B+2 i A) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}+\frac{(4+4 i) a^{5/2} (B+i A) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{2 (-1)^{3/4} a^{5/2} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)} \]

[Out]

(2*(-1)^(3/4)*a^(5/2)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((4 +
4*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a^2*((
2*I)*A + B)*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) - (2*a*A*(a + I*a*Tan[c + d*x])^(3/2))/(3*d*Tan
[c + d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.664995, antiderivative size = 190, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {3593, 3601, 3544, 205, 3599, 63, 217, 203} \[ -\frac{2 a^2 (B+2 i A) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}+\frac{(4+4 i) a^{5/2} (B+i A) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{2 (-1)^{3/4} a^{5/2} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(5/2),x]

[Out]

(2*(-1)^(3/4)*a^(5/2)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((4 +
4*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a^2*((
2*I)*A + B)*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) - (2*a*A*(a + I*a*Tan[c + d*x])^(3/2))/(3*d*Tan
[c + d*x]^(3/2))

Rule 3593

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(a^2*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^
(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
 d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m -
 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac{5}{2}}(c+d x)} \, dx &=-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2}{3} \int \frac{(a+i a \tan (c+d x))^{3/2} \left (\frac{3}{2} a (2 i A+B)+\frac{3}{2} i a B \tan (c+d x)\right )}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\\ &=-\frac{2 a^2 (2 i A+B) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4}{3} \int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{3}{4} a^2 (4 A-3 i B)-\frac{3}{4} a^2 B \tan (c+d x)\right )}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a^2 (2 i A+B) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\left (4 a^2 (A-i B)\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx-(i a B) \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a^2 (2 i A+B) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{\left (i a^3 B\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac{\left (8 a^4 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a^2 (2 i A+B) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{\left (2 i a^3 B\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a^2 (2 i A+B) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{\left (2 i a^3 B\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{2 (-1)^{3/4} a^{5/2} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a^2 (2 i A+B) \sqrt{a+i a \tan (c+d x)}}{d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [B]  time = 9.91254, size = 618, normalized size = 3.25 \[ \frac{\cos ^3(c+d x) \sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \left (\csc (c) \left (\frac{2}{3} \cos (2 c)-\frac{2}{3} i \sin (2 c)\right ) \csc (c+d x) (3 B \sin (d x)+7 i A \sin (d x))-i \csc (c) \left (\frac{2}{3} \cos (2 c)-\frac{2}{3} i \sin (2 c)\right ) (i A \sin (c)+7 A \cos (c)-3 i B \cos (c))+\left (-\frac{2}{3} A \cos (2 c)+\frac{2}{3} i A \sin (2 c)\right ) \csc ^2(c+d x)\right )}{d (\cos (d x)+i \sin (d x))^2 (A \cos (c+d x)+B \sin (c+d x))}+\frac{\sqrt{e^{i d x}} e^{-i (3 c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} (a+i a \tan (c+d x))^{5/2} \left (8 (B+i A) \log \left (e^{-i c} \left (\sqrt{-1+e^{2 i (c+d x)}}+e^{i (c+d x)}\right )\right )+\sqrt{2} B \log \left (\frac{2 e^{\frac{7 i c}{2}} \left (2 i \sqrt{-1+e^{2 i (c+d x)}}-i \sqrt{2} e^{i (c+d x)}+\sqrt{2}\right )}{B \left (e^{i (c+d x)}-i\right )}\right )-\sqrt{2} B \log \left (-\frac{2 i e^{\frac{7 i c}{2}} \left (2 \sqrt{-1+e^{2 i (c+d x)}}+\sqrt{2} e^{i (c+d x)}-i \sqrt{2}\right )}{B \left (e^{i (c+d x)}+i\right )}\right )\right ) (A+B \tan (c+d x))}{\sqrt{2} d \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \sec ^{\frac{7}{2}}(c+d x) (\cos (d x)+i \sin (d x))^{5/2} (A \cos (c+d x)+B \sin (c+d x))} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(5/2),x]

[Out]

(Sqrt[E^(I*d*x)]*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*(Sqrt[2]*B*Log
[(2*E^(((7*I)/2)*c)*(Sqrt[2] - I*Sqrt[2]*E^(I*(c + d*x)) + (2*I)*Sqrt[-1 + E^((2*I)*(c + d*x))]))/(B*(-I + E^(
I*(c + d*x))))] + 8*(I*A + B)*Log[(E^(I*(c + d*x)) + Sqrt[-1 + E^((2*I)*(c + d*x))])/E^(I*c)] - Sqrt[2]*B*Log[
((-2*I)*E^(((7*I)/2)*c)*((-I)*Sqrt[2] + Sqrt[2]*E^(I*(c + d*x)) + 2*Sqrt[-1 + E^((2*I)*(c + d*x))]))/(B*(I + E
^(I*(c + d*x))))])*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/(Sqrt[2]*d*E^(I*(3*c + d*x))*Sqrt[((-I)*
(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*Sec[c + d*x]^(7/2)*(Cos[d*x] + I*Sin[d*x])^(5/2)*(A*Cos
[c + d*x] + B*Sin[c + d*x])) + (Cos[c + d*x]^3*((-I)*Csc[c]*(7*A*Cos[c] - (3*I)*B*Cos[c] + I*A*Sin[c])*((2*Cos
[2*c])/3 - ((2*I)/3)*Sin[2*c]) + Csc[c + d*x]^2*((-2*A*Cos[2*c])/3 + ((2*I)/3)*A*Sin[2*c]) + Csc[c]*Csc[c + d*
x]*((2*Cos[2*c])/3 - ((2*I)/3)*Sin[2*c])*((7*I)*A*Sin[d*x] + 3*B*Sin[d*x]))*Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c
+ d*x])^(5/2)*(A + B*Tan[c + d*x]))/(d*(Cos[d*x] + I*Sin[d*x])^2*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.044, size = 620, normalized size = 3.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x)

[Out]

-1/3/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2/tan(d*x+c)^(3/2)*(-9*I*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*t
an(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^2*a+3*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1
/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a+14*I
*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+12*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^2*a+6*I*ln(1/2*(2*I*a
*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*x+c)^2*a-3*
(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(ta
n(d*x+c)+I))*tan(d*x+c)^2*a+6*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+6*ln
(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*tan(d*
x+c)^2*a+2*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*(I*a)^(1/2))/(I*a)^(1/2)/(-I*a)^(1/2)/(a*tan(d
*x+c)*(1+I*tan(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.93953, size = 2317, normalized size = 12.19 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/6*(4*sqrt(2)*((8*A - 3*I*B)*a^2*e^(4*I*d*x + 4*I*c) + 2*A*a^2*e^(2*I*d*x + 2*I*c) - 3*(2*A - I*B)*a^2)*sqrt(
a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 3*
sqrt((-32*I*A^2 - 64*A*B + 32*I*B^2)*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(
2)*((4*I*A + 4*B)*a^2*e^(2*I*d*x + 2*I*c) + (4*I*A + 4*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2
*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + I*sqrt((-32*I*A^2 - 64*A*B + 32*I*B^2)*a^5/d
^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((4*I*A + 4*B)*a^2)) + 3*sqrt((-32*I*A^2 - 64*A*B + 32*I*B^2)*
a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*((4*I*A + 4*B)*a^2*e^(2*I*d*x + 2*
I*c) + (4*I*A + 4*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*
I*c) + 1))*e^(I*d*x + I*c) - I*sqrt((-32*I*A^2 - 64*A*B + 32*I*B^2)*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*
x - 2*I*c)/((4*I*A + 4*B)*a^2)) + 3*sqrt(4*I*B^2*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d
)*log((sqrt(2)*(B*a^2*e^(2*I*d*x + 2*I*c) + B*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I
*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + I*sqrt(4*I*B^2*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d
*x - 2*I*c)/(B*a^2)) - 3*sqrt(4*I*B^2*a^5/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt
(2)*(B*a^2*e^(2*I*d*x + 2*I*c) + B*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e
^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - I*sqrt(4*I*B^2*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)
/(B*a^2)))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.64862, size = 263, normalized size = 1.38 \begin{align*} \frac{\left (i - 1\right ) \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{4} +{\left (\left (2 i + 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{3} - \left (2 i + 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{4}\right )} \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} \sqrt{i \, a \tan \left (d x + c\right ) + a} B}{{\left (2 i \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{4} a - 10 i \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{2} + 18 i \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{3} - 14 i \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{4} + 4 i \, a^{5}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(5/2),x, algorithm="giac")

[Out]

((I - 1)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(I*a*tan(d*x + c) + a)^3*a^4 + ((2*I + 2)*(I*a*tan(d*x + c)
 + a)^3*a^3 - (2*I + 2)*(I*a*tan(d*x + c) + a)^2*a^4)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*sqrt(I*a*tan(d
*x + c) + a)*B)/((2*I*(I*a*tan(d*x + c) + a)^4*a - 10*I*(I*a*tan(d*x + c) + a)^3*a^2 + 18*I*(I*a*tan(d*x + c)
+ a)^2*a^3 - 14*I*(I*a*tan(d*x + c) + a)*a^4 + 4*I*a^5)*d)